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ABSTRACT

This thesis compare.; the detection performance of the 1-1/2 D instantaneous power

spectrum (1-1/2 Dips), the bispectrum, the instantaneous higher-order moment slice

(IHOMS) method, and the spectrogram for multi-component stationary signals,

harmonically related stationary signals, and multi-component linear FM signals corrupted

by additive white Gaussian noise. In addition, a determination of the relative processing

gain between the 1-1/2 Dips method and the spectrogram is made for stationary signals in

noise.

The results of this thesis show that 1-1/2 Dip, has a processing gain advantage over

that of the spectrogram for a range of input SNR that depends upon the size of the data

window. Under some conditions, the bispectrum can detect both harmonic coupling and

phase coupling between the components of multi-component signals. IHOMS' ability to

detect linear chirps in noise is limited to chirps having different slew rates, and the method

has a significantly greater computational cost than both the spectrogram and 1- 1/2 Dips.
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I. INTRODUCTION

A. OVERVIEW

Spectral estimation is an important data analysis tool used in signal processing to

determine the diszribution of power as a function of frequency. The "classical" Fourier

transform methods and a variety of more recently developed parametric methods are now

commonly used to estimate power spectral density. These methods are based on the

autocorrelation domain and therefore rely upon information contained in the second order

moment of the data sequence. Recent improvements in computational capability have

opened up a new and active research area concerned with the extraction of additional

information contained in the data sequence's higher-than-second order statistics. [Refs.

1,2]

Higher order statistics involve cumulants rather than moments. Cumulants and

moments are similar, and each can be expressed in terms of the other. In fact, under

certain conditions they are identical. Higher order spectra (HOS), also known as

polyspectra, are formed by taking the Fourier transform of the cumulant sequence. For

example, the two-dimensional Fourier transform of the third order cumulant yields the

polyspectrum known as the bispectrum. Likewise, the three-dimensional Fourier

transform of the fourth order cumulant is called the trispectrum. If the first moment is

zero, the second order cumulant is equal to the second order moment, and the one-

dimensional Fourier transform of either sequence produces the familiar power spectrum.

[Refs. 1,3]

Higher order statistics and their spectra possess some exploitable properties that their

second order counterparts do not. One potential advantage involves a greater resistance
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to the effects of certain types of additive noise. For white or colored, zero mean Gaussian

processes, the cumulant of any order greater than two is zero and the corresponding

polyspectrum is zero. Consequently, polyspectra are expected to be more resistant than

the power spectrum is to the effects of additive Gaussian noise. One limitation of the

power spectrum is that phase cannot be accurately reconstructed unless the underlying

signal or system is minimum phase. In contrast, higher order spectra preserve true phase

information. Finally, HOS are useful for detection and classification of non-

linearities. Depending upon the application, the extra computational cost of HOS may be

justified. [Refs. 3,4]

The bispectrum, the 1-1/2 D instantaneous power spectrum [Ref. 5], and the

instantaneous higher order moment slice (IHOMS) method [Ref. 6] are studied in this

thesis. Performance comparisons are made with respect to esich method as well as to an

accepted second order method.

B. THESIS OUTLINE

The following describes the organization of the remainder of this thesis. Chapter IH

first defines cumulants and shows their relation to moments. The essentials are then

presented for each spectral estimation method studied. Chapter IR makes a processing

gain comparison between the 1-1/2 D instantaneous power spectrum and the spectrogram.

Chapter IV displays simulation results that show how the different methods perform on a

variety of signals. Chapter V presents conclusions and suggestions for future

work. Appendices contain the detailed steps of Chapter M calculations and the Matlab

programs used to execute the computer simulations.

2)



II. ELEMENTS OF HIGHER ORDER SPECTRAL ANLYSIS

This chapter describes the higher order based techniques compared later in this

thesis. Sufficient information is presented in order to develop an adequate understanding

of each method. We first define cumulants and show how they are used instead of

moments to form polyspectra.

A. CUMULANTS AND MOMENTS

In general, the characteristic function,4D (jco), is defined as the conjugated Fourier

transform of a random variable's probability density function, f(x) [Ref. 7]:

S(jGo) = jf(x) exp (f.ox) dx. (2.1)

The right-hand side of (2.1) is simply the expectation of exp (jcoX). The nth moment of

the random variable X can be found by evaluating the nth derivative of the characteristic

function with co set equal to zero [Ref. 7]:

E{Xn} = (_j) n d"_D-(jco) (2.2)
do,"

In comparison, the nth cumulant is defined as the nth derivative of the natural logarithm of

the characteristic function evaluated at co = 0 [Ref. 4]:

C{Xn} = (-j)nd--d4n[4(o)d.0 (2.3)

Although (2.3) clearly shows the basic difference between a moment and a cumulant,

it does not readily show that a cumulant can be considered as a moment with its lower order

3



statistical dependence removed [Ref. 8]. This is perhaps best seen by computing

cumulants in an alternate manner that involves a partitioning of equal and lower order

moments.

Given a set of random variables X = {XJX 2, .... Xk}, 1 = {1,2, ... , k} is

defined to be the set of component indices contained in X. Denoting a subset of Ix by /,

using mx (I) to represent the moment of those components of X comprising X1, and

denoting the cumulant of X, as cX (1), the moment-to-cumulant (M-C) equation can be

written as [Ref. 3]:

qcx~l =O.Uq ! -)- (q -1)! -l mx (I) ;P (2.4)

where Ip are non-intersecting non-empty subsets of I that form the partitions, and q is var-

ied from one to the number of elements in I. The summation in (2.4) is over all unique

partitions and for all q. The first order cumulant is equal to the first order moment since

only one unique partition exists for one random variable. Table 2.1 shows how (2.4) is

applied to compute the moment partitions that form the second order cumulant. Table

2.2 displays the details of the third order cumulant calculation. Summing the last column

of Table 2.1 yields the second order cumulant. Summing the last column of Table 2.2

produces the third order cumulant. The first three orders of cumulants, expressed in

terms of the component indices of a set of random variables, are then:

c(1) =m

c(1,2) = m(1,2)-m(1)m(2),

c(1,2,3) = m(1,2,3) +2m(1)m(2)m(3) -m(1,2)m(3)
-m(1, 3) m(2) -im (2,3) m (1).

Calculation of the fourth order cumulant is similarly detailed in [Ref. 3]. An expression

that calculates moments from partitioned cumulants is also given in [Ref. 3].

4



TABLE 2.1: COMPUTATION OF SECOND ORDER CUMULANT

M-C
11 12 q equation

(2.4)

1,2 1 m(1,2)

1 2 2 -m(1)m(2)

TABLE 2.2: COMPUTATION OF THIRD ORDER CUMULANT

11 12 13 q M-C equation (2.4)

1,2,3 1 m(1,2,3)

1,2 3 2 -m(1,2)m(3)

1,3 2 2 -m(1,3)m(2)

2,3 1 2 -m(2,3)m(1)

1 2 3 3 2m(1)m(2)m(3)

Inspection of the moment-cumulant expressions show that dependencies among

random variables are removed when cumulants are calculated. In fact, both the second

and third order cumulants are zero if all the random variables are independent of each other.

[Ref. 8]

Another observation regarding the above moment-cumulant expressions applies in the

commonly encountered situation where the means of the random variables are equal to

zero. When this is true, the first order cumnulant is zero since it equals the mean, the

second order cumulant simply equals the variance, and the third order cumulant equals the

third order moment. [Ref. 3]

5



There is more than one acceptable choice when it comes to choosing which term(s) to

conjugate in the expectation expression for moments of order greater than two. Different

choices have different consequences when the signal being processed is complex [Refs. 9,

10]. One consequence is considered later when the symmetry region of the bispectral

plane is discussed. For now, the conjugated terms are chosen arbitrarily. The following

expressions show the details of the moment calculations in the last set of equations for the

zero mean case [Ref. 11]:

C(1) = E{x[n]} = 0, (2.5)

C(2) [11] = E {x* [n] x [n + 11] } , (2.6)

C(3) [11, 12] = E {x* [n] x [n +1 1] x [n+ 2 ] } . (2.7)

The expression for the fourth order cumulant as calculated by (2.4) has 15 moment terms.

If the mean is zero all but four terms go to zero when the signal is real [Refs. 3,11]:

C(4) [11,12,13] = E{x[n]x[n+11 ]x[n+1 2]x[n+13]}

-E {x in] x In + 11] } E {x [n + 12] x [n + 13] }
-E {x [n]x [n +121} E{x [n +ll]x [n+ 13] } (2.8)

-E {x [n]x [n + 13] } E {x [n + 11] x [n + 12] }-

Provided that two of the four random variables are conjugated in the expectation terms

of (2.8), the fourth order cumulant of a zero mean complex process has just three

expectation terms. One of the last three terms in (2.8) will be zero. The zero term

depends upon which variables are conjugated. [Ref. 11 ]

Cumulants have three properties that make them more desirable than moments when

it comes to higher order statistics:

1. Each cumulant is independent of all lower order cumulants. Consequently, all

cumulants of order greater than two are equal to zero for a Gaussian process, as

a Gaussian process is completely characterized by its first and second

6



moments. Higher order moments, on the other hand, can contain information

about lower order moments. In fact, only higher order moments of odd order

are zero for a Gaussian process. The non-zero even order higher moments do

not contain any information not already contained in the first two moments.

[Ref. 8]

2. If a set of n random variables can be divided into more than one statistically

independent subset, then the nth order cumulant, unlike the nth order moment, is

equal to zero. [Ref. 4]

3. Unlike moments, the cumulant of the sum of two independent stationary random

processes is equal to the sum of the cumulants of each process. [Ref. 4]

B. THE BISPECTRUM

1. Definition and Region of Support

The bispectrum is defined as the two-dimensional Fourier transform of the third

order cumulant [Ref. 4]:

SC(3)
=((l, (2) (l=,12 )exp{-j(w 1 + 2 12)}. (2.9)

Analogous to the power spectrum, the bispectrum can also be defined with frequency

domain quantities Given N samples of stationary signal x (n), its Fourier transform is

N-i
X (o) = Ex(n) exp (-jcon). (2.10)

n-0

Assuming that the third order cumulant in (2.9) is computed with the conjugation scheme

shown in (2.7), the equivalent frequency domain expression for the bispectrum is obtained

through an extension of the periodogram [Refs. 9,12]:

7



B (0ol) X 02OX (2.11)
B (u' 0 2) = 1X (CO1 + 02)(

where 10o1[ < , 1032! •r, and 0o)1 +0) 2 1 <n. Equations (2.9) and (2.11) represent two

different non-parametric methods that can be used to calculate the bispectrum. The

approach taken by (2.9) is called the indirect method, while the approach used by (2.11) is

known as the direct method. [Ref. 1]

In general, the bispectrum's region of support is a hexagon centered at the origin

of the (0o3' (02 ) bi-frequency plane. Evaluation of the mean product of three Fourier

amplitude terms shows that the bispectral plane exhibits certain symmetries. For a

stationary, real, continuous time signal the expected value of the product of three Fourier

components is [Ref. 13]:

E IX, (O) XC (C02) XC (3)= Bc (0o1 , co2 ) (ao1 + (02 + 3 ); (2.12)

where the subscript c denotes continuous time quantities.

Three properties of (2.12) determine bispectral symmetry. First, since the

frequency indexes must sum to zero, (03 = - CD - C02" Second, the frequency indexes in

the expectation operation can be interchanged. Third, for the bispectrum of a real signal,

conjugate symmetry results since B (-1,% -02) = B* (01,032). Using the first

property to express (03 in terms of o), and o)2 ' the symmetry lines for a continuous time

signal are [Ref. 13]:

031 = 02'

2°o I --- C2 (from 0h = -03)'

2(02 = -C01 (from (02 (03),

CD1 = - CD 2'

02 = 0 (from co1 =-0 3)'

8



(01 = 0 (from w2 = -0) 3).

2n
If the signal is band-limited to (o and sampled at a rate of o) = 2(o = the

2irn 2n)
bispectrum term in (2.12) becomes B(wo1 + (-02 + -) after applying the

approximation:

X(0))• Xc(0+ • ).(2.13)
n 0 0-

2nn

The frequency indexes in (2.12) now must sum to -- instead of zero. As a result, the

following set of symmetry lines are formed in the bispectrumn of a sampled signal [Ref.

13]:

(01

2•n

0) +2o) = 2t

2(1 +(2 T

=z

2nn2 T

2nn

Figure 2.1 shows the region of support and its symmetry lines for the first of an

infinite number of bispectral hexagons given a sampled real signal [Refs. 12,13]. The

sampling period is assumed to be equal to one. A complex signal has the same hexagonal

support region as that of a real signal but it is symmetrical about only one of three dotted

symmetry lines shown in Figure 2.1. Depending upon the term conjugated in (2.7) used to

9



compute the third order cumulant for the indirect method, or which term in (2.11) is

conjugated to compute the bispectrurn by the direct method, the bispectrum of the complex

signal exhibits symmetry in only one quadrant about either the Wo = O)2 line, the

o02 = -2o) line, or the ol = -2o)2 line. The conjugation scheme used exclusively in

this study is shown in (2.7) and (2.11). Under this scheme, the bispectrum of a complex

signal displays two-fold symmetry in the first quadrant about the ow = o02 line. There

are two other possible ways to conjugate just one term, and three possible ways to conjugate

any two terms in the applicable expressions. The bispectrum symmetry for these other

schemes are considered fully in [Ref. 9].

S',,

(0=-2),, 04.=o)2

•T 7E

°'°'"°'°°° .1

S°,

II 1 .°

Figure 2.1: The bispectral plane.
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Because of the symmetry described above, only a small portion of the bispectrun

needs to be computed. Once the bispectrurn is known for this small region known as the

non-redundant region, the rest of the bispectrum can be found using symmetry. The non-

redundant region, again for the sampled signal case, is shown in Figure 2.2. [Ref. 12,13]

0)2

2ct~l+">=2n

2r/3 - "
- N. ..

22n/ ---

0 27/ "-

Figure 2.2: The non-redundant region of the bispectrum.

2. Computation by the Indirect Method

The indirect method requires a two-dimensional Fourier transform of an

estimated third order cumulant sequence. A two-dimensional window can be used

provided that it satisfies certain requirements based on cumulant symmetries. The

following procedure outlines the indirect method given the data set

IX(0),X(1), ... X(N- 1) } : [Ref. 1]

1. Form K segments of M samples such that N=KM.

2. Remove the mean from each segment.

3. Defining i=1,2,...K to indicate the segment number, estimate the third order

moment sequence for each segment, {x (i) (k), k = 0, 1, .. .M -1 }

II



G)(in, n) [x U) (l)]x(i) (l+m)x(i) (1+n); (2.14)
M E

where sl=max(O,-m,-n) and s2=min(M-1,M-1-m, M-1-n). This sequence is

also called the tri-correlation sequence.

4. Average all segment moment estimates:

R(m,n) =I K PU) (m,n). (2.15)
kilI

5. Multiply the averaged moment estimate by a two-dimensional window, W(m,n),

and take the two-dimensional Fourier transform to obtain the bispectrum esti-

mate:

L L
B(lC)= E o R(m,n)W(m,n)exp{-j(o01m+0o2n) }; (2.16)

m--L nn-L

where L <M - 1.

The window, W(m,n), used in the tri-correlation sequence defined in (2.16) must

satisfy the following conditions [Ref. 1,111:

1. The window conforms to third order cumulant symmetry. Specifically,

W(m,n) = W(n,m) = W(-m,n-m) = W(m-n,-n).

2. The window is zero outside the region of support for the tri-correlaticon

sequence.

3. The window is normalized to one at mr=n=O.

4. The Fourier transform of the window is non-negative.

Windows used in this study belong to a separable class of window functions defined by

W(m,n) = d(m)d(n)d(n-m), (2.17)

where an appropriate one-dimensional window, d(m), was chosen subject to the following

constraints:

12



d(m)=d(-m)

d(m)=O for m > L,

d(O)=l,

D(w) >0 forall w. [Ref 11]

The unit hexagonal window was constructed by applying (2.17) to a one-

dimensional rectangular window [Ref. 14],

d(m) = 1 for mlm[L,

d (m) = 0 otherwise.

The one-dimensional Parzen window, given by

d(m) = 1 - 6 (lml) + 6 ( IMI) for Im! < ,L
L L 2'

d(m) = 22(1-[J)3

d(m) =0 forlml>L,

was similarly transformed into a two-dimensional Parzen window [Ref. 1]. The last

separable window considered is known as the minimum bias supremum window, or

simply the optimum window. The corresponding one-dimensional window is defined by

[Ref. 1]:

d(m) = L sin(m) +(1- )cos(--) forlml<•L,

d(m) =0 forlml>L.

A trade-off situation exists between the Parzen window and the optimum window

with regard to the windows' statistical properties. The bias of the optimum window is

about 18% smaller than that of the Parzen window. However, the optimum window has

a 26% greater variance. [Ref. 15]
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3. Computation by the Direct Method

The direct method generates the bispectrum from (2.11). This requires a one-

dimensional Fourier transform of the signal. Frequency domain smoothing can be used

to reduce the variance of the final bispectrum estimate. The direct method is outlined for

the dataset {X(0),X(1), ... , X(N- 1) } [Ref. 1,12]:

1. The data sequence is segmented into K segments. The mean is removed from

each segment before zero padding the segment to a convenient fast Fourier

transform length, L.

2. An L-point Fourier transform, Y(V) (X), is computed for each segment. The

superscript designates the segment number.

3. The bispectrum estimate of the ith segment, denoted as bi is then computed by:

bi (X1,) = 1k L ) (X 1) Y (X2) [Y(i) (XI ÷ 2) 1*.

4. Two different approaches can be taken now to reduce the variance of the final

estimate. The first approach, denoted Bh, involves smoothing each segment

separately and then averaging the smoothed segment estimates. The

smoothing is accomplished uniformly over each bispectral location's R2

neighboring frequency points [Ref. 12]:

1 R/2 R/2
Bi~o1 ,co 2 ) = K Y bi(X•+r,. 2 +s) (2.18)

I . I r - -R/2 s - -R/2
2rf5 . 2nfs.

where =oI 2 (Ls ) A.1,w C2  (-L- ) X•1 and R < L.

In the second approach, denoted A2 , all the unsmoothed segment estimates are

first coherently averaged:

B 2 ((O1 , C02) = (•)1bi(w,2). (2.19)
i-4
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Then a frequency domain smoothing window is applied through a two-

dimensional convolution. [Ref. 14]

Hi-Spec software [Ref. 14] is used in this study to compute the bispectrum by the

direct method. This program uses the second approach described above, based upon

(2.19) to reduce the variance of the final bispectrurn estimate. There are a few options

available in this software package to accomplish the frequency domain smoothing. The

option chosen most frequently is the Rao-Gabr window defined by:

W n)2 + n2 +mn-
W(m,-n) = F3 m' 2  ] for (m, n) E G;

L
where M = , or half the Fourier transform length. The set G is the collection of (m, n)

points satisfying

m2 + n2 +mn < winlen
M2

The parameter winlen is the desired window length. Spatial smoothing is applied over

the (winlen) 2 adjacent frequency points around each bispectrum point. [Refs. 12,14]

4. Comparison of Methods

Both the direct method and the indirect method lead to asymptotically unbiased

estimators, i.e., E {I (c)19 co2) } a! B (wl, (°2). The indirect method has an asymptotic

variance given by:

var {Re h (oc0 2)} = var Im B (Coll (1 2)}

Ew

where &w is the energy of the tri-correlation domain window, P (wo) is the true power

spectrum, M = 2L + 1 is the Fourier transform size (i.e., an M x M FFT), and K is the

15



number of segments averaged [Ref. 1]. The asymptotic variance of the direct method

when using the smoothing approach described by (2.18) is:

var {ReBh (col, (02)} =var {Im B(co, W2 )}
N
N2K P ((0d)P ( (02) P ((01 + (o2),

2KL

where N is the length of the data sequence, K is the number of segments, and L is the size

of each segment. [Ref. 12]

The direct method and the indirect method are identical when neither uses a

window, and the indirect method's tri-correlation estimate is computed for a number of lags

equal to the full segment length so that L = M - I in (2.16).

C. THE 1-1/2 D INSTANTANEOUS POWER SPECTRUM

The 1-1/2 D instantaneous power spectrum (1-1/2 Dips) is a combination of the

standard 1-1/2 D spectrum (I-1/2 Dstd) and the Instantaneous Power Spectrum (IPS) [Refs.

3,5,16]. It is shown in [Ref. 5] that 1-1/2 Dips performs better than the conventional

spectrogram in some respects. When used to process dynamic signals, 1-1/2 Dips is

observed to have a quicker spectral rise time and a quicker fall-off time than the

spectrogram. The 1-1/2 Dips method also appears to be good at detecting low SNR

stationary signals. [Ref. 5]

The standard 1-1/2 D spectrum is a degenerate form of the bispectrum. When the

first lag in (2.7) to set to zero, the third order cumulant expression becomes

C(3)(0,12) = E{X*(n)X(n)X(n +1 2)} (2.20)

= EfIX(n) 2X(n+1 2)}.

A one-dimensional Fourier transform of (2.20) produces the 1-1/2 Dstd spectrum. [Ref. 3]
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The Instantaneous Power Spectrum is defined as the average of the derivatives of

Page's running spectrum,

1 2

p(t,f) = s (f ) exp(H2nf)d (2.21)

and Levin's backward running spectrum,

2

Pb(1 ,f = (-Es() exp (-j2nfc) dt . (2.22)

A discrete version of IPS is obtained by taking the Fourier transform of windowed

correlation estimates formed using simple lag products vice a sum of lagged products:

IN-1

IPS (n, co) = N {X (n) X* (n - k) + X* (n) X (n + k) I w (k) exp (-jmok); (2.23)
k-O

where w (k) is the window function, and N is the length of the sampled data sequence

{X(0),X(1),...,X(N-1)} [Refs.5,16].

The 1-1/2 Dips algorithm is created by substituting the estimate of (2.20) into (2.23) so

that
I N- )I2X n 12 X

1-1/2 Dips (n, o) = X(n) (n-k) +IX(n)2(n +k) } w(k) exp(-jok)
(2.24)

with variables defined as in the IPS equation. [Ref. 5]

D. INSTANTANEOUS HIGHER-ORDER MOMENT SLICE

The time-frequency representation introduced in [Ref. 6] is based upon a one-

dimensional Fourier transform of a higher-order moment slice. While satisfying certain

constraints, a desired number of different moment slice sets are generated in order to form

an equal number of different but related time-frequency surfaces. As a consequence of

17



the moment slice construction constraints, signal dependent auto-terms are enhanced and

c:oss-terms are de-emphasized when the time-frequency surfaces are coherently

summed. To further control the contrast between auto-terms and cross-terms, each

moment slice is multiplied by a kernel function before being Fourier transformed. The

kernel function controls the degree of auto-term and cross-term concentration on the time-

frequency surface. [Ref. 6]

The instantaneous higher-order moment slice (IHOMS) method is used to detect

multicomponent linear chirp signals having different instantaneous frequency slopes, or

slew rates. One characteristic of this time-frequency representation is that auto-term lines

pass through the origin of the time-frequency plane. The number of auto-terms so

identified indicate the number of chirps in the signal. In addition, the angle that the

auto-term line makes with the time axis is related to the instantaneous frequency of the

chirp. [Ref. 6]

The IHOMS method is outlined for a received signal, x (t) , given by

M
X (t) : Eexp U (uit + bi?)], (2.25)

i-1

where M is the number of chirps in the received signal. The instantaneous frequency of

the ith chirp is given by:

fA(t) W d [uit+bit2] (2.26)

1
- __ [ui+2bit].

A general expression for a sampled version of (2.25) is:

Snui (n 21

x(n) = Eexp{j2n ()ui+ () bij}; (2.27)
i-i
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where the sampling period is assumed to be unity, and N is the number of discrete samples

in the data record. [Ref. 6]

The following procedure is used to form the IHOMS time-frequency surface [Ref. 61:

1. The desired order of the moment slice, r, is chosen first. The order should be

greater than three so that a variety of related time-frequency surfaces can be

summed in order to form the composite surface. In general, auto-terms stand

out better when more surfaces are summed. However, if the order is chosen

too large, cross-term effects increase and may cause spurious peaks in the com-

posite time-frequency surface.

2. The th parameter vector, a (k) = [1 a(k) .. ". a, ](k)' is generated somewhat arbi-

trarily but subject to the following constraints:
r-1

, a_ ( k , (2.28)
i.,i

and

(k) 2
r- [a )] - 1. (2.29)
i=,i

3. The moment slice is then calculated for a given instant of time (t), a given

parameter vector, and a desired number of lags (T):

mr. (-c;t, a (k)) = x* (-c) x (t + alt) ... x (t + a,_ 1-). (2.30)

4. The parameter g in the kernel function, exp (-g-2) , is chosen very small so that

auto-terms concentrate along straight lines. However, if g is made too small,

cross-terms show up everywhere on the time-frequency plane and tend to add up

like auto-terms when the surfaces are later summed to form the composite

surface.
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5. The Fourier transform of the moment slice is computed and multiplied by the

kernel function,

Z(fk)) = exp(_g)m(;t, a(k)) exp (-j27tft) dt. (2.31)

6. Steps three through five are repeated for a different time instant, the same

parameter vector, the same g, and the same number of lags. Stacking the

results of (2.31) for successive time instants forms a complex valued time-fre-

quency surface based upon a particular parameter vector.

7. A new parameter vector is generated and then steps three through six are

repeated to create another time-frequency surface. This is done again and

again until the desired number of complex valued surfaces are computed. The

composite surface is obtained by taking the magnitude of the coherently

summed parameter vector dependent time-frequency surfaces,

K

G(t,f) = E•Z(t,f;a (k)) (2.32)
k=1

where K is the number of different parameter vectors used to generate an equal

number of related time-frequency surfaces.

The maxima of the function,

R2

D(6) = E G(vcosO, vsin0), (2.33)
v-R1

where 0 is varied between zero and 7r/2 radians, and the radial distance v is varied

incrementally between RI and R2, correspond to chirps. The value of b in the slope term

of a given chirp's instantaneous frequency expression, (2.26), can be found from the 0

producing the associated maximum value in (2.33) using the relation:
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N2 ta•; (2.34)

where the subscript j denotes a particular chirp, P is the number of lags used to compute

the moment slice in (2.30), and N is defined as in (2.27).
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III. PROCESSING GAIN COMPARISONS

In this chapter we compare the performance of 1-1/2 Dips to that of the periodogram

and its time-frequency representation, the spectrogram. The next chapter will examine

bispectral as well as IHOMS methods, and compare them to 1- 1/2 Dips and the spectrogram

where appropriate.

Matlab programs used to conduct the computer simulations for this chapter are

described first. Theoretical calculations and simulation results are then presented to show

how each method treats noise and signal components separately. Finally, relative signal-

to-noise ratio processing gains are estimated.

A. SIMULATION PROGRAMS

The 1-1/2 Dips algorithm was originally implemented in [Ref. 5] with the extrinsic

Matlab function ONEHALF. Modifications were subsequently made to the program to

remove the mean from each data segment and to delete some unnecessary smoothing

steps. The revised ONEHALF function is contained in Appendix C. The user specifies

an input data sequence, the size of the data window, a step increment, and a window

function. ONEHALF returns the time-frequency representation of the input

sequence. The ONEHALF algorithm is based upon (2.24) but is constructed in such a

way as to avoid undesirable product term interferences that may form spurious peaks in the

time-frequency representation. The following sequence is first generated:

prodl = [element(O) element(l) ... element( winlen 1)j; (3.1)

where,
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element(k) = Ix(n)12 {x* (n-k) +x(n+k) }, (3.2)

winlen is the specified data window length, and x(n) is the input data segment. A second

sequence, prod2, is formed by deleting the first element in prodl and then reversing the

order of the conjugated remaining elements:

prod2 = rod1* (winlen),prodl* (winlen 1) .... prodl* (2)] (3.3)prod 2 prd*(-),rd*( 2 T

The two sequences are then concatenated and a zero is inserted between them to form a

proper correlation function having a real valued Fourier transform. The 1-1/2 Dips

estimate can then be obtained by multiplying the real part of the transformed sequence by

one-half. However, since the magnitude squared estimate is required later in this study

to compare the 1-1/2 Dips and spectrogram representations, ONEHALF computes the

magnitude vice the real part of the transform:

1-1/2 Dips = [rodl Oprod2]}; (3.4)

where 5 denotes Fourier transform.

SPECTRO is the extrinsic Matlab function included in Appendix C that implements

the spectrogram. It has the same input and output format as ONEHALF. The two

functions are equivalent with respect to zero padding and transform length so that fair

comparisons can be made between the two methods. At each step the function computes

the periodogram:

winlen-1 2

Pper ((0) = x (n) w (n) exp(-jwn) (3.5)
n-O

where the data segment, x(n), is padded with zeros to the transform length of winlen if

necessary, and w(n) is an appropriate window function. A rectangular window (i.e.,

w(n) = 1 over the support of n) is assumed in the estimate variance calculations to follow.
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B. NOISE ONLY PERFORMANCE COMPARISON

The variance of the 1-1/2 Dip, estimate is derived for a zero mean white Gaussian

input. The details of this calculation are contained in Appendix A. If the input is real,

the theoretical variance based on (2.24) is given by,

var {1-1/2 Dips = 54 + 6winlen (02)3 (3.6)= 4 x 36

where winlen is the length of the data window and 2 is the variance of the input. For a

complex input the variance is

var { 1-1/2 ip = [winlen + 2] (02) 3. (3.7)

The variance of the periodogram as defined by (3.5) with a rectangular window is [Refs.

2,11]:

var {Per} -winlen2 (02)2 (3.8)

Both estimate variances are dependent upon the length of the data window and the input

variance. For a given input variance and increasing window length, the periodogram's

variance increases more rapidly than does the estimate variance of 1-1/2 Dips because the

periodogram's variance is proportional winlen2 rather than winlen. However, since the

1-1/2 Dip, variance is a function of the input variance cubed and the periodogram's vari-

ance depends upon input variance squared, 1-1/2 Dips's variance increases quicker than

the periodogram's for a fixed window length and increasing input variance.

Computer simulations confirm the theoretical variance expressions (3.6) and (3.8),

and the expected trends as window length and input variance are changed. Real valued

white Gaussian noise is processed by ONEHALF employing a rectangular window and a

step increment set equal to the window length so that no overlapping of data segments

occurs. Since SPECTRO is written for a fixed step increment of one, the periodogram is
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estimated directly from (3.5) in the Matlab script file used to perform the simulations.

Simulation parameters, measured estimate variances, and theoretically expected variances

are shown in Table 3.1. Measured input variances are used to compute the theoretical

variances. There is good agreement between theoretical and expected values. The

methods cannot be compared number for number to each other because the periodogram

variance is a magnitude squared quantity and 1-1/2 Dips is a magnitude quantity.

However, comparisons between the methods can be made regarding their relative

responses to changing window length and input variance. For a window length of 256,

1-1/2 Dips's variance increases by a factor of about 342 when input variance is increased

from one to seven. For the same variance change, the periodogram's variance increases

by a considerably smaller factor of about 49. When input variance is three and window

length increases from 128 to 512 the periodogram's variance increases by a factor of 15

while 1-1/2 Dips only increases by a factor of three.

TABLE 3.1: THEORETICAL VS. MEASURED 1-1/2 DipS AND PERIODOGRAM
VARIANCES FOR VARIOUS WINDOW LENGTHS AND INPUT VARIANCES

input window 1-1/2 Dips 1-1/2 Dips periodogram periodogram
theoretical measured theoretical measuredvariance length variance variance variance variance

1 128 204.3 205.5 20,456 19,487

1 256 394.2 377.8 77,549 93,217

1 512 779.8 707.6 303,490 297,930

3 128 5,515.8 5,549.5 184,100 175,380

3 256 10,644 10,201 697,940 838,960

3 512 21,056 19,107 2,731,400 2,681,300

7 128 70,071 70,499 1,002,300 954,850

7 256 135,220 129,590 3,799,900 4,567,600

7 512 267,490 242,720 14,871,000 14,598,000
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The 1-1/2 Dips and spectrogram time-frequency representations of a white Gaussian

noise input are shown in Figure 3.1. ONEHALF generates the 1-1/2 Dips estimate and

SPECTRO produces the spectrogram. Both representations are formed by applying a

rectangular window to a single 128 noise sample realization using a 64 point window length

and a step increment of one. The most striking difference between the two surfaces is that

1-1/2 Dip, consists of several short time duration spikes while the spectrogram exhibits a

more continuous and smoother surface. The spikier appearance of the 1- 1/2 Dips surface

indicates that the 1-1/2 Dip, estimate de-correlates faster than the spectrogram. As a

consequence, the typical 1-1/2 Dips frequency bin contains more independent scgments

than does the typical spectrogram bin. This is significant because a larger reduction in

variance is realizable from a greater number of independent segments when the power in a

bin is summed.

The number of independent segments in a bin is estimated by applying a relation used

to determine the degrees of freedom for a chi-squared distribution. Given a collection of

n normally distributed zero mean unit variance random variables, the degrees of freedom

(DF) represent the number of independent random variables contained in the

collection. Degrees of freedom are found from the mean and variance of the sum of the

random variables, s = x+ + 2... + x., using the relation:

DF = (3.9)
Os

where g. and cs2 are the mean and variance respectively, of s. [Ref. 7]

Ten spectrogram and 1- 1/2 Dips representations for different realizations of real white

unit variance Gaussian noise are used to estimate the degrees of freedom with (3.9). The

degrees of freedom are calculated for the individual time-frequency cell (i.e., the estimate's

26



1202

140

1201

80
40,

2201

04 -77 -61

1220

time frequency bin 10 20 30
frequency bin

(a) (b)

120 A

600. 
m

40.80 U

400, so-

300,

2020

0,

t1no frequency bin 10 20 30
freqruency bin

(c) (d)

Figure 3.1: Time-frequency representations of unit variance white Gaussian noise;
(a) 1-1/2 Dips mesh plot, (b) 1-1/2 Dips contour plot, (c) spectrogram mesh plot, and

(d) spectrogram contour plot.
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value in one frequency bin at one time step), as well as for the frequency bin. The

degrees of freedom for a cell is based upon the mean and variance of all the values in the

frequency bin. The degrees of freedom for a bin is based upon the mean and variance of

the average frequency bin values for all the bins in the surface. The final degrees of

freedom estimates are obtained by averaging the degrees of freedom computed for each of

the ten realizations. Table 3.2 summarizes the results of the simulations for various

window lengths and window functions. In all cases, SPECTRO and ONEHALF use a

step increment of one, and the data sequence is twice the size of the window length. The

degrees of freedom for a cell in the 1-1/2 Dips representation is approximately 0.6 while

the degrees of freedom for the spectrogram cell is about four. The degrees of freedom

for a bin depends upon the window function. With a rectangular window, a 1-1/2 Dips

bin has about 17.5 degiees of freedom and a spectrogram bin has almost six degrees of

freedom. If a Hamming window is applied to the data, the spectrogram and 1-1/2 Dips

bin degrees of freedom figures increase to about eight and 27, respectively.

TABLE 3.2: DEGREES OF FREEDOM FOR 1-1/2 DipS AND SPECTROGRAM
ESTIMATES

window ONEHALF ONEHALF SPECTRO SPECTRO
function DFceu DFbin DFceu DFbin

64 rectangular 0.6582 16.3737 4.1109 5.8239

64 Hamming 0.6185 26.9717 4.4057 7.7394

128 rectangular 0.6326 18.7693 4.0822 5.9613

128 Hamming 0.5974 27.5028 4.1742 8.0081

The data sequence length divided by the bin degrees of freedom indicate the size of

the independent segments in a typical frequency bin. For example, the size of an
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independent segment in the 1- 1/2 Dips estimate based on a window length of 64, a 128 point

sequence, and a rectangular window is 128/16.3737 -a 8. For the same parameters, the

spectrogram independent bin segment size is about 22. These figures seem reasonable

based upon "eyeball" estimates of independent bin segment size in Figure 3.1 contour plots.

When an estimate's frequency bin values are averaged, the anticipated variance

reduction factor is given by the ratio of that estimate's DFbin to DFceu values. The

expected variance reduction factor for 1- 1/2 Dips is about 29 for a rectangular window and

45 for a Hamming window. The spectrogram has an expected variance reduction factor

of 1.5 for a rectangular window and two for a Hamming window.

Computer simulations using ONEHALF and SPECTRO confirm that an exploitable

difference in variance reduction capability exists between 1-1/2 Dips and the spectrogram

when frequency bin averages of a time-frequency surface are computed. Gaussian white

noise is simulated to serve as a noise only, real input signal. Both methods employ a

rectangular window on the same input signal. The step increment is specified to be one

for each method and the data window length is consistently set equal to half of the data

sequence length. For the first set of simulations, noise variance is fixed while the

transform length is varied. The simulations require that each method generate a time-

frequency representation for fifteen different input sequences. The fifteen representations

are then averaged to form one time-frequency surface. For this, and all remaining

simulations performed in this study, the averaged 1-1/2 Dips surface is squared so that its

amplitude can be fairly compared to the spectrogram's amplitude. As a consequence of

computer program design, data sequence length, and choice of step size the first and last

winlen/2 time steps are calculated using zero-padded data segments. These time steps are

deleted and the average value of each frequency bin on the average surface is calculated.
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Figures 3.2 through 3.6 show these average frequency bin values for an input noise

variance of one and window lengths of 32, 64, 128, 256, and 512, respectively. The bin

corresponding to dc, and the bin corresponding to the fold-over frequency are omitted from

the plots. To allow for a meaningful comparison, the mean frequency bin average is

subtracted from each plot. Examination of Figures 3.2 through 3.6 indicate that 1-1/2 Dips

exhibits a lesser output variation than does the spectrogram as the transform length

increases. This observation is confirmed in Figure 3.7 which plots the measured oitput

variance versus transform length for the first simulation set.
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Figure 3.2: Averaged output variance for winlen =32 and a2 = 1.
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Figure 3.3: Averaged output variance for winlen = 64 and 2= 1.
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Figure 3.5: Averaged output variance for winlen -256 and Y2=1
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Figure 3.7: Spectrogram (dashed) and 1-1/2 Dips (solid), output variance vs. window length

for -2=1.
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The simulation was repeated for different input noise variances and a fixed window

length. Figure 3.8 shows the relationship between output variance and input variance for

a window length of 128. The point at which the two curves in Figure 3.8 intersect can be

considered a performance breakpoint. At input variances below the breakpoint value (i.e.,

about 1.5 from Figure 3.8), the 1-1/2 Dips estimate has less variation than the

spectrogram. When the input variance is larger than the breakpoint value the spectrogram

exhibits less variation than 1-1/2 Dips. Other simulations show that breakpoints for

window lengths ranging from 32 to 512, although gradually increasing as window length

increases, all correspond to an input noise variance of approximately 1.5.

Figure 3.8 shows that the spectrogram has a variance of about 1000 when the input

variance is about 1.3. Considering the processing scheme, the expected variance is the

theoretical estimate variance given by (3.8) reduced by two factors. The first factor is

equal to the number of time-frequency surfaces averaged to obtain a representative surface.

The second factor is the degrees of freedom based variance reduction factor estimated

earlier. Therefore, the expected spectrogram output variance is given by:
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winlen
2 (y2) 2

vat { Spectrol a}
nsurf VRF

1282. 1.32
15" 1.5

= 1231;

where the numerator is (3.8), nsurf is the number of time-frequency surfaces averaged in

the simulation, and VRF is the degrees of freedom variance reduction factor for a

rectangular window. The expected and actual variances for the spectrogram agree fairly

well considering that the comparison is based upon approximate values.

The same comparison is made for 1-1/2 Dips. According to Figure 3.8, an input

variance of approximately 1.45 results in a 1-1/2 Dips estimate variance of about

1000. The theoretical variance given by (3.6) is reduced by the same factor of 15 used in

the spectrogram calculation since this factor depends only upon the number of time-

frequency surfaces averaged. The theoretical variance is also reduced by a degrees of

freedom variance reduction factor that is larger than the spectrogram's (29 vice 1.5). To

account for squaring the output of ONEHALF in the simulations, (3.6) is also

squared. The expected 1-1/2 Dips variance based on the processing scheme is:

[54 + 6winlen] 2 (02) 6

var { 1-1/2 Dips} a-
4.nsurf" VRF

[54 + 6 128] 2 (1.45)6

42. 15•29

=902.

The expected variance agrees fairly well with the simulation variance for the 1-1/2 Dips

estimate considering that approximate values are being compared.
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Figure 3.8: Spectrogram (dashed) and 1-1/2 Dips (solid), output variance vs. input variance
for winlen = 128.

C. SIGNAL ONLY PERFORMANCE COMPARISON

Appendix B details the calculations made using (2.24) to determine the theoretical

1-1/2 Dips estimate for a signal only. For a real valued sinusoid given by

x(n) = cos(2n Mn), (3.10)

the theoretical estimate is:

N 3

112 Dip= (2nmn) {5(co-m) +8[w- (N-m)] }. (3.11)

The periodogram is defined in (3.5). For the same signal, the theoretical value of the

periodogram is the magnitude squared of the Fourier transform of the input signal:

N
2

Per (n, c) = (j) j{6(co- m) + 8[e)-(N -m)] (3.12)

If the signal consists of a single complex sinusoid,
m

x(n) = exp(j2it'J-n), (3.13)
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the theoretical 1-1/2 Dips estimate is given by:

1-1/2 Dips (n, co) = Ncos (2n Mn) b(co-m); (3.14)

and the theoretical value of the periodogram is:

Per (n, a)) = N2 8 (co - m) (3.15)

Results of computer simulations using SPECTRO and ONEHALF validate the

theoretical calculations for the periodogram and 1-1/2 Dips, respectively. For the

simulations, a 128 point data window is stepped through a 256 point data sequence one

point at a time. Both methods apply a rectangular window function to the data. The first

and last winlen/2 time steps are discarded before computing any averages or plotting any

results. The 1-1/2 Dips estimate is squared to allow a fair comparison with the

spectrogram. Figure 3.9 shows the mesh plot and corresponding contour plot of the

1- 1/2 Dips estimate for the real signal. The sinusoidal signal is centered in frequency bin

20. Bin 20 and the average of each frequency bin are plotted in Figure 3.10(a) and

Figure 3.10(b), respectively. The maximum power at any one time step is approximately

4042. This agrees fairly well with the magnitude squared value of (3.11) which is equal

to half of the window length squared, or 4096. The intra-ridge modulation exhibited by

bin 20 in Figures 3.9 and 3.10(a) results from the cosine cubed modulating term in (3.11).

The average power of bin 20 is approximately 1280 as shown in Figure 3.10(b).

Figures 3.11 and 3.12 use the same arrangement of plots to display spectrogram results

for the real signal. The maximum power agrees exactly with the theoretical value of 4096

calculated using (3.12). Figure 3.12 shows that the average power of bin 20 is equal to

the maximum power. The maximum power of each method is about the same, however,

the average power of 1-1/2 Dips is approximately one-third as much as the spectrogram's

average power due to the intra-ridge modulation effect.
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Figure 3.9: 1-1/2 Dips time-frequency representation of a real sinusoid.
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Figure 3.10: 1-1/2 Dips signal power in bin 20 (real sinusoid).
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Figure 3.11: Spectrogram time-frequency representation of a real sinusoid.
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Figure 3.12: Spectrogram signal power in bin 20 (real sinusoid).
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When the same simulations are run with a complex sinusoidal input, ONEHALF

produces a maximum signal power approximately equal to the length of the data window

squared which agrees with the squared magnitude of (3.14). As a result, ONEHALF's

maximum power is about equal to the spectrogram's for both real valued and complex

valued signals. However, for the complex valued sinusoid the average power in bin 20 of

the 1-1/2 Dips estimate is about half that of the spectrogram's rather than a third as it was

for the real sinusoid. This is a consequence of the different modulating terms in (3.11) and

(3.14). The real signal is modulated by a cosine cubed function which has a magnitude

squared average value of about 0.345 for a unit amplitude cosine over one period. In

contrast, the complex valued signal is modulated by a cosine function having a magnitude

squared average value of about 0.52.

D. SNR PROCESSING GAIN COMPARISONS

The ability of a technique to detect a signal in noise is measured in two ways. The

first measure is a processor signal-to-noise ratio (PSNR), or simply the ratio of processor

signal power to processor noise power:

PSNR = P sg (3.16)

where P. is the noise variance. The second approach, denoted PDIF, measures the power

of the signal in terms of the number of noise standard deviations above the mean noise

power level:

PDIF = Psig - P'n.PDF=, (3.17)
(Yn

where gn is the processed noise mean power and on is the standard deviation of the

processor output noise power. The ratio of either (3.16) or (3.17) for two processing
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techniques forms a figure of merit used to compare methods. To compare 1-1/2 Dips and

the spectrogram using (3.16) the processing gain ratio is defined as:

PGSNR = PSNRONEHALF (3.18)
PS-NRSPECTRO'

When (3.17) is the measure of interest, the processing gain ratio is given by:
PGDJF = PDIFONEHALF (3.19)

PDIFsPECTRO

Computer simulations are used to measure the processing gain for various window

lengths and input noise variances. The input consists of a fixed amplitude real sinusoid

centered in frequency bin 20 and mixed with Gaussian white noise. For this scenario the

input signal-to-noise ratio (SNR) is given by:

SNR = lOlog P (3.20)

= ilol(ig)2

Fifteen realizations of each simulation are averaged in order to obtain representative

results. As before, the input data sequence is twice the length of the data window, a

rectangular window is applied to the data, and the data window is stepped through the

input sequence one point at a time. Figure 3.13 shows the resulting plots for a data

window length of 128, and an input SNR of -3dB. The fifteen-realization averaged

1-1/2 Dip, time-frequency surface is shown in Figure 3.13(a) and its corresponding

frequency bin average is displayed in Figure 3.13(b). Figures 3.13(c) and 3.13(d) are the

averaged spectrogram time-frequency surface, and its frequency bin averages,

respectively. Figures 3.14, 3.15, 3.16, 3.17, and 3.18 display the results for the same

window length but for different input SNRs of about -10dB, -15dB, -17dB, -18.5 dB, and

-19.5 dB, respectively.
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Processing gain comparisons using (3.18) and (3.19) were made of the frequency bin

averages as a function of SNR for the signals shown in Figures 3.13 through 3.18. The

average value of the signal bin was used for Psig to compute PSNR and PDIF. The mean,

standard deviation, and variance of the noise were computed using all bins except the one

containing the signal. Table 3.3 summarizes the results of these processing gain

computations.

The PGSNR performance measure is consistent with results obtained from the noise

only simulations and the signal only simulations. As expected from these earlier

simulations, PGSNR is greater than one (indicating that 1-1/2 Dip, performs better than the

spectrogram) when the input variance is smaller than about 1.5. This is agrees with the

breakpoint determined from the analysis of Figure 3.8 earlier. Based upon the time-

frequency representations however, PGDEF appears to be a more useful indicator of

detection performance over a much wider range of input SNRs.

The PGDIF column of Table 3.3 shows that the 1- 1/2 Dip, frequency bin average signal

peak estimate, when measured in terms of noise standard deviations above the mean noise

level, is about 1.6 times higher than it is for the spectrogram estimate when the input SNR

is about -3dB. As input SNR decreases the relative processing gain also decreases. Both

methods are equivalent when input SNR is about -19dB. The spectrogram becomes the

better estimate by this standard at SNRs lower than -19dB for this window length.
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Figure 3.13: Sinusoid in bin 20 with SNR a -3dB; (a) 1-1/2 Dips time-frequency
representation, (b) 1-1 /2 Dip bin averages, (c) spectrogram time-frequency representation,

and (d) spectrogram bin averages.
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Figure 3.14: Sinusoid in bin 20 with SNR • -10dB; (a) 1-1/2 Dips time-frequency
representation, (b) 1- 1/2 Dips bin averages, (c) spectrogram time-frequency representation,

and (d) spectrogram bin averages.
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Figure 3.15: Sinusoid in bin 20 with SNR -z -15dB; (a) 1-1/2 Dips time-frequency
representation, (b) 1-1/2 Dips bin averages, (c) .pectrogram time-frequency representation,

and (d) spectrogram bin averages.
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Figure 3.16: Sinusoid in bin 20 with SNR g -17dB; (a) 1-1/2 Dips time-frequency
representation, (b) 1- 1/2 Dips bin averages, (c) spectrogram time-frequency representation,

and (d) spectrogram bin averages.
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Figure 3.17: Sinusoid in bin 20 with SNR as -18.5dB; (a) 1-1/2 Dips time-frequency
representation, (b) 1-1/2 Dips bin averages, (c) spectrogram time-frequency representation,

and (d) spectrogram bin averages.
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Figure 3.18: Sinusoid in bin 20 with SNR -- -19.5dB; (a) 1-1/2 Dips time-frequency
representation, (b) 1-1/2 Dips bin averages, (c) spectrogram time-frequency representation,

and (d) spectrogram bin averages.
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TABLE 3.3: RELATIVE PROCESSING GAINS FOR VARYING INPUT SNR AND
A FIXED DATA WINDOW LENGTH OF 128

input SNR PGSNR IDIFONaLF M'FSPEMO PcaGpDndIF

(-dB) figun no.

3.01 1.4270 217.8826 132.4518 1.6450 3.12

10.00 < 1 37.9275 29.3067 1.2942 3.13

14.77 < 1 12.8635 11.2700 1.1414 3.14

16.99 < 1 8.0222 7.4846 1.0718 3.15

18.45 < 1 5.9961 5.8097 1.0269 3.16

19.54 < 1 4.8344 4.8552 0.9957 3.17

Results of signal-in-noise simulations run for a smaller 64 point data window and a

larger 256 point data window are consistent with those obtained for the 128 point

window. However, the range of input SNRs over which the 1-1/2 Dips method yields a

larger processing gain than does the spectrogram depends upon window length. For the

64 point window, 1-1/2 Dips yields a larger processing gain than the spectrogk ,m only for

input SNRs greater than about -12.5dB. As already demonstrated, for a 128 point window

1-1/2 Dips has a larger processing gain than the spectrogram for input SNRs greater than

about -19dB. Simulations using a 256 point window showed that 1-1/2 Dips performs

better than the spectrogram in terms of processing gain even when the input SNR is less

than -21dB and the signal cannot be readily discerned from the noise in the averaged

frequency bin plots. In effect, for this type of signal and processing scheme using a 256

point data window, 1-1/2 Dips's processing gain is between 1.15 and 1.64 times larger than

the spectrogram's for input SNRs between -2ldB and -3dB. The simulations also indicate

that the processing gain performance of 1-1/2 Dip, improves relative to the spectrogram

with increasing window length.
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IV. SIMULATION RESULTS AND ANALYSIS

Simulation results are presented to show how 1-1/2 Dip., the bispectrum methods,

IHOMS, and the spectrogram deal with three types of signals. The spectrogram,

bispectrum, and 1-1/2 Dips methods ar- first compared using a signal consisting of multiple

unrelated stationary sinusoids that are mixed with white Gaussian noise. Next, the

bispectral representation of noise free signals containing harmonically related stationary

components is studied. Lastly, a received signal containing multiple linear FM

components mixed with white Gaussian noise is processed using IHOMS, 1-1/2 Dips, and

the spectrogram.

A. STATIONARY SINUSOIDS

The spectrogram is computed using the Matlab function SPECTRO, and the 1- 1/2 Dips

method is implemented via ONEHALF. Their time-frequency representations for a

single sinusoidal signal are discussed in Chapter Ill.

The bispectrum methods produce a frequen, •. frequency representation instead of a

time-frequency representation. The direct method for computing the bispectrum is

realized through the Hi-Spec Matlab function BISPEC_D of [Ref. 14]. This function

returns the complex bispectrum matrix and a frequency axis labeling vector. The user

specifies an input data sequence, the desired Fast Fourier Transform (FFT) size, the number

of samples per segment, the amount of overlap between data segments, and the desired

form of the frequency smoothing window. The extrinsic Matlab function INDBIS

contained in Appendix C implements the indirect method of calculating the bispectrum. It

returns the complex bispectrum of the signal supplied by the user. The FFT size, the
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number of data samples per segment, and the desired tri-correlation window function are

specified by the user. The three window options available are the unit hexagonal window,

the Parzen window, and the optimum window (also known as the minimum bias supremum

window).

Both bispectrum methods are used to generate bispectral representations of a noise

free sinusoid located at frequency bin 20. The input sequence consists of 256

samples. Both methods apply a 128 puint FFT to each of four non-overlapping data

segments containing 64 data points each. The indirect method representations are formed

from tri-correlation functions based upon 31 lagr. Figure 4.1 shows the full bispectrum

plane representation of a real sinusoid generated by the direct method without a

window The sinusoid is indicated by the peak in the first quadrant located at

(k1, k2) = (20, 20) , and associated symmetry peaks like the one in the third quadrant at

(kl, k2) = (-20,-20).

The representation of a real sinusoid at bin 20, formed by the indirect method using a

unit hexagonal window is displayed in Figure 4.2. The rectangular window used by both

ONEHALF and SPECTRO, the unit hexagonal window used by INDBIS, and the

unwindowed BISPECPD are essentially equivalent window functions so that

representations formed using them are considered unwindowed. Two closely spaced

peaks are discernible at the signal locations in the indirect method's representation. This

is a characteristic of this method which depends upon the number of lags used to compute

the hi-correlation function. The two peaks at each location become less distinct as the

number of lags used to compute the tri-correlation sequence is increased. Another

difference between Figure 4.1 and 4.2 is that the indirect representation exhibits peaks at

(kj, k2) --- (20, -20) and (kj, k2) = (-20, 20) which are not noticeable in the direct

method's representation. It turns out that both of the methods are sensitive to the phase
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of a real signal, and that the methods produce slightly different representations for the same

phase. The signal used to create the bispectrurm in Figure 4.1 has a different phase than

the signal which the bispectrum in Figure 4.2 is based upon. Both phase values are

specially chosen to chosen to minimize any peaks on the kI = 0 and k2 = 0 axes. In the

case of the direct method's representation, this also minimized the peaks at

(k1, k2) = (20, -20) and (k1, k2) = (-20, 20). Bispectral peaks located on either

the kI or the k2 axis in subsequent plots are referred to as zero axis peaks.

The unwindowed full bispectrum representations for a complex sinusoid obtained by

the direct method and indirect method are shown in Figure 4.3 and 4.4, respectively. Like

the real signal representation, the complex signal produces a peak at (kI, k2) = (20, 20).

The complex signal's bispectrum does not exhibit as many symmetry peaks as does the real

signal's representation because the bispectrurn of a complex signal is symmetric about only

one symmetry line and in only one quadrant. Which line, and which quadrant are

determined by the conjugation scheme used to compute the bispectrum [Ref. 9]. For the

equivalent schemes used by INDBIS and BISPECD which are described in Chapter H,

symmetry exists about the ki = k2 line in the first quadrant. The peaks at

(k1 , k2) = (0, 20) and (kl, k2) = (20, 0) in both representations are zero axis

peaks. Unlike real signal representations, zero axis peaks in the bispectrum of a complex

signal have a consistent amplitude regardless of signal phase.

The first bispectral quadrant is essentially the same for either a real or a complex

sinusoid, and is sufficient for measuring a sinusoidal signal's frequency. The only

additional information not contained in the first quadrant is whether or not the signal is

complex or real. The remaining bispectrum figures in this thesis will display just the first

quadrant.
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Figure 4.1: Full bispectrum of a real sinusoid at bin 20 (unwindowed direct method).
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Figure 4.2: Full bispectrum of a real sinusoid at bin 20 (unwindowed indirect method).
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Figure 4A4 Full bispectrum of a complex sinusoid at bin 20 (unwindowed indirect method).
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The next four examples of single real valued sinusoid bispectrums are intended to

show what windowing can do for each method. At the same time, the effects of signal

phase on the bispectral representations are noted. Figure 4.5 shows the bispectrum as

computed by the direct method and smoothed by a Rao-Gabr window over 52 adjacent

frequency points. The signal is a real sinusoid located at bin 20 with a phase angle of 0.484

radians. The same processing scheme yields the representation shown in Figure 4.6 if the

signal phase is changed to 4.3151 radians. The indirect method, employing a Parzen

window on a real signal with a phase equal to 0.484 radians produces the representation

shown in Figure 4.7. When the signal with a phase of 4.3151 radians is processed by the

indirect method using an optimum window (the optimum window and Parzen window are

not significantly different for this type of signal), it produces the bispectrum shown in

Figure 4.8. Windowing helped to make the two distinct peaks at (k 1, k2 ) = (20, 20)

appear as one in the indirect representation. The zero axis peaks of the indirect

representation incorrectly appear to be offset from the zero axes because the first quadrant

plots do not show the adjacent peaks in the second and fourth bispectral quadrants. The

signal frequency is more accurately and more clearly depicted by the direct method's peak

locations. In addition, the direct method is faster than the indirect method as implemented

in this study. However, if the signal is known to be either complex or real, the indirect

method can be implemented in such a way as to take advantage of the bispectrun symmetry

in order to reduce computational costs. This is done in [Ref. 14] to implement the indirect

method for real signals in Hi-Spec's Matlab function BISPECJ.

The bispectrum, spectrogram, and 1-1/2 Dips methods are now used to process a signal

consisting of three complex valued sinusoids in additive white Gaussian noise. The three

frequencies of the signal are at bins 10.65, 28.05, and 54.7. Noise variance is fixed while

signal amplitude is varied to achieve different input SNRs. The phase angle of each signal
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Figure 4.5: Rao-Gabr smoothed direct bispectrum of real sinusoid (0.484 radians).
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Figure 4.6: Rao-Gabr smoothed direct bispectrum of real sinusoid (4.3151 radians).
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Figure 4.7: Parzen windowed indirect bispectrum of real sinusoid (0.484 radians).
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Figure 4.8: Optimum windowed indirect bispectrum of real sinusoid (4.315 1 radians).
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component is distributed uniformly on the interval (0, 27t). The data sequence has 256

samples. The 1-1/2 Dips spectrum is computed by ONE-RALF, the spectrogram is

generated by SPECTRO, and the bispectrum is calculated by the direct method using

BISPEC_D. A step increment of one is employed for both SPECTRO and ONEHALF,

while a 50% overlap is specified for BISPECD. To allow for a fair comparison, all

three methods are unwindowed. Fifteen representations for each method are computed

using different noise realizations. These surfaces are then averaged to obtain either a

representative time-frequency surface, or a representative frequency-frequency surface, as

appropriate. The averaged surface, along with its frequency bin average is displayed for

various input SNRs and window length. The bispectral frequency bin average is the

average power in each kI frequency bin. A horizontal line on the frequency bin plot is

placed three noise standard deviations above the noise mean to provide a reference

point. The noise statistics are computed after removing outliers from the frequency bin

average values. Figure 4.9 shows the spectrogram representation for a 128 point window

length, and an input SNR of -6dB. The 1-1/2 Dips spectrum, and the bispectrum for the

same input SNR and window length are displayed in Figures 4.10 and 4.11, respectively.

The signal components are clearly detected by all three inethods but the symmetry of the

bispectrum causes extra peaks that extend above the three standard deviation reference

line in Figure 4.11 (c).

Figures 4.12, 4.13, and 4.14 show the spectrogram, the 1-1/2 Dips spectrum and the

bispectrum, respectively, for an input SNR of -18dB and a window length of 128. At this

lower SNR it is difficult to distinguish the signal components in the methods' mesh plots,

Figure 4.12(a), 4.13(a), and 4.14(a). However, the sinusoids are discernible in the contour

plots and bin average plots of all three methods without any spurious peaks exceeding the

three standard deviation reference line. The slight processing gain advantage of the
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Figure 4.9: Spectrogram of three complex sinusoids at an input SNR of -6dB. The

representation is formed using a 128 point data window.
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Figure 4.10: 1-1/2 Dips spectrum of three complex sinusoids at an input SNR of -6dB.
The representation is formed using a 128 point data window.
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1-1/2 Dips method over the spectrogram at this SNR and window length is barely

noticeable in Figures 4.12(c) and 4.13(c). But, the signal peaks and the larger noise

peaks in the spectrogram plot are closer to the three standard deviation reference line than

they are in the 1-1/2 Dip, plot. Relative to the spectrogram, the bispectrum signal peaks

have the same height above the reference line but the noise peaks are closer to the line.

Figure 4.15 displays just the frequency bin plots of the three methods for an input SNR

of-2ldB. The spectrogram has a slight advantage over 1-1/2 Dips at this SNR in terms of

the proximity of signal peaks and noise peaks to the three standard deviation line. This is

consistent with Chapter III simulation results which indicate that the relative processing

gain favors the spectrogram below -19.5dB for this window length. The bispectrum has

relatively weaker signal peaks and larger noise peaks than either of the other two methods.

Figure 4.16 shows the frequency bin average plots for the same SNR of -21dB but a

larger data window of 256 points. The 1-1/2 Dips spectrum, as expected for this larger

window length, appears to perform slightly better than the spectrogram. However, one

noise peak at bin 60 in the 1-1/2 Dips plot just reaches the three standard deviation line in

Figure 4.16(b). The bispectrum has strong signal peaks and relatively low noise peaks

except for the one at about bin 118 that exceeds the reference level.

Figure 4.17 displays the frequency bin plots for an SNR of -26dB and a window length

of 256. For all three methods, only the first signal component exceeds the reference level.

The 1-1/2 Dips representation's signal peak has a slightly larger relative height above the

reference line than either of the other methods. No one method distinguishes itself with

respect to ruppressing the noise peaks in this case.
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Figure 4.13: 1-1/2 Dips spectrum of three complex sinusoids at an input SNR of -18dB.

The representation is formed using a 128 point data window.
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Figure 4.15: Frequency bin averages for an input SNR of -21dB and a 128 point window

length; (a) spectrogram, (b) 1-1/2 Dis and (c) bispectrum.
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Figure 4.16: Frequency bin averages for an input SNR of -21dB and a 256 point window

length; (a) spectrogram, (b) 1- 1/2 Dis and (c) bispectrum.
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Figure 4.17: Frequency bin averages for an input SNR of -26dB and a 256 point window
length; (a) spectrogram, (b) 1-1/2 Dip, and (c) bispectrum.
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B. HARMONICALLY RELATED SINUSOIDS

One of the main advantages of higher than second order spectra lies in their ability to

preserve true phase information [Ref. 1]. A common application found in the literature to

test this ability is the detection of quadratic phase coupling [Refs. 1,3,4,11]. Three

sinusoids are quadratically phase coupled when they are both harmonically related and

phase related. Harmonically related means that one of the sinusoids has a frequency equal

to the sum of the other two. Similarly, phase related means that one of the phases is equal

to the sum of the other two. [Ref. 1]

Simulations involving BISPECD show that the bispectrum is sensitive to signals

containing harmonic components in general and not just when quadratic phase coupling

occurs. A signal consisting of two sinusoids is considered initially. The first sinusoid

has a frequency corresponding to bin 15, the second sinusoid's frequency corresponds to

bin 40. Both sinusoids have uniform random phases independently distributed over the

interval (0, 2n). The bispectrum representation is generated using BISPECD with a 32

Rao-Gabr window, a 64 point data window, and 128 point FFTs. Figure 4.18 shows the

bispectrum representation of this signal. Both components of the signal are indicated by

the vertically aligned pair of peaks in k1 bins 15 and 40, and/or by the horizontally aligned

peaks in k2 bins 15 and 40. Figure 4.19 displays the results for the same simulation when

the second sinusoid's frequency is changed so that it now corresponds to bin 30 and

becomes a harmonic of the first component. Only the one peak at kI = k2 = 15 actually

stands out on the bispectrun surface. The bispectrum is blind to the sinusoid at bin 30

because it is the highest harmonic component of the first sinusoid contained in the signal.

A signal comprised of three harmonic components located at bins 15, 30, and 45 is now

processed under two phase related conditions. For the first condition, all the phases are

i.i.d. uniformly over (0, 2 ). The bispectrum representation for this signal is shown in
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Figure 4.18: Two unrelated sinusoids, one at bin 15 and the other at bin 40.
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Figure 4.19: Two harmonic sinusoids, one at bin 15 and the other at bin 30.
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Figure 4.20. The highest harmonic component is again not represented by a significant

peak located in bin 45. However, the bispectrum does indicate by its appearance that the

signal contains harmonic components based on the fundamental frequency corresponding

to bin 15. If the components were not harmonics of this fundamental frequency the

bispectrum surface would have an appearance similar to that previously shown in Figure

4.11.

x10' 60s

2• 50

1.5
40

!I
30o

05

20-

60

10

0 20 40 I0
K2 bin axis 0 20%2040 s

kI bin axis ki bin axis

(a) (b)

Figure 4.20: Three harmonic sinusoids in bins 15, 30, and 45 with unrelated phases.

Figure 4.21 displays the bispectrum for the three harmonic component signal under the

second phase condition. Here the third sinusoid has a phase equal to the sum of the other

two component phases. This situation satisfies the definition of quadratic phase

coupling. There is essentially no difference between this bispectrum and the one

generated for the unrelated phase condition. When the signal components are harmonics

of the same fundamental frequency, the bispectrum representation does not discern

quadratic phase coupling.
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Figure 4.21: Three quadratically phase coupled harmonic sinusoids in bins 15, 30, and 45.

If the signal components are harmonically related but are not harmonics of the same

fundamental frequency, the bispectrum does distinguish quadratic phase coupling. This

frequently considered situation in the bispectrum literature is depicted in Figure 4.22. The

signal components are quadratically coupled but the signal frequencies are 15, 25, and 40

rather than harmonics (i.e., 15,30, and 45). This representation has just two peaks located

at the intersection of the k, and k2 bins where the first two sinusoids reside.
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Figure 4.22: Quadratically phase coupled sinusoids located in bins 15, 25, and 45.
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C. MULTI-COMPONENT LINEAR CHIRPS

A computer simulation based upon Example 1 of [Ref. 6] is used to compare the

processing ability of IHOMS, 1-1/2 Dji, 5 and the spectrogram when the received signal

consists of two linear FM signals mixed with white Gaussian noise. In terms of the

variables in (2.27),

M R +(n2n

x(n) = Vexp{j27 ( )u+(N) b }

Mistwo, u1 = 8, bi = 94, u 2 = 196, b2 = 30, andN = 256. With a record length

equal to one second and a sampling rate of 256 samples/second, chirp 1 exhibits a slew

rate of 188 Hz/second, starts at a frequency of 8/256, and finishes at 196/256. Likewise,

chirp 2 has a slew rate of 60 Hz/second, starts at a frequency of 196/256, and finishes at a

frequency equal to 256/256. The parameter ui is the fractional starting frequency of the

ith chirp times N. The parameter bi is equal to half of the fractional frequency difference

of the ith chirp times N, or simply half of the ith chirp's slew rate.

The IHOMS method was applied first by fcJowii:g the procedure outlined on pages

19 through 21. Choosing to work with a fourth (.der moment slice of the signal fixes the

length of the parameter vector, a, to four (i.e., a = j1, a1, a 2, a3 ] ). GENA is an

extrinsic Matlab function in Appendix C used to generate a desired number of different

parameter vectors having elements that satisfy (2.28) and (2.29). Three parameter vectors

are formed for the first simulation. The remaining steps in the procedure are carried out

by the extrinsic Matlab function ATHIMS in Appendix C. One-hundred lags are used to

compute the fourth-order moment slice by (2.30) and one time-frequency representation is

calculated in accordance with (2.31) for each of the three parameter ve-,ctors. The value

for the parameter g in the exponent of the kernel function in (2.31) is set equal to 0.0008

because the same value was found to give acceptable results in Example 1 of [Ref. 6]. The
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final time-frequency representation is obtained by computing the magnitude of the three

parameter vector specific surfaces. Figate 4.23(a) shows an IHOMS time-frequency

representation based upon a fourth order moment slice and three parameter vectors for a

noise-free signal consisting of chirp 1 and chirp 2. The two chirps are indicated by the

two contour lines radiating from the origin. The remining lines on the plot are cross-

terms. Figure 4.23(b) is a plot of the one-dimensional function D (e) given by

(2.33). This function represents the magnitude of the time-frequency surface along radial

lines passing through the origin of the surface. The first maximum in Figure 4.23(b)

occurs at 0.09 radians and corresponds to the b parameter of chirp 2 through (2.34):

b2 -=26 tan (0.09) = 29.57.

-2(100)--

Applying (2.34) to the location of the second maximum, 0.28 radians, an estimate of the b

parameter of t'e first chirp, I, = 94.23, is obtained.
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Figure 4.23: Three parameter vector MOMS representation for a noise-free signal.
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Figure 4.24 shows the three parameter vector IHOMS representation for the same two

chirps mixed with white Gaussian noise at an input SNR of -3dB. The chirps cannot be

distinguished from the background noise.
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Figure 4.24: Three parameter vector MIOMS representation when SNR = -3dB.

Signal detection is improved by summing more parameter vector specific surfaces in

order to form the IHOMS representation. This is accomplished by creating more

parameter vectors. The IHOMS representation in Figure 4.25 uses 21 parameter vectors

on the two chirp signal at an SNR of -3dB. The chirps are once again discernible. Even

with 21 parameter vectors the detection capability degrades significantly as the SNR

becomes worse. Whether the chirps can still be distinguished in Figure 4.26 when the

SNR is -5.5dB is questionable. At lower SNRs they definitely become lost in the noise.

The I- 1t2Dips - spectrogram estimates of the double chirp signal are obtained using

ONE_HALF and SPECTRO respectively. A rectangular window function, a 32 point

"74



12000
I * 8

90 . 11000F

80 o0 I' ,I°•"o ° •
7o- 10000'

'"Id * 8 •0 9000

0 69000

s0- 4000-

0

10o 3 # 000'

CC0

20- 40 6 s0001

300 0000

0 , 4000

10' :. 4000-

8, ' 200 I

80 ,• Q •, 0 II.. ,I ' 3 0

70 20 40 so so 300- 5 ' , 2timo/lag theta1 In ra~dians

(a) (b)

Fig e 4 :T t parameter vtor MOMS representaion when SNR =-3dB.

1 0 ' "H 
0 0 . '

7 0- , .2500-

30 •l 0 ' * • o

3000

MW 0

40 1o' o 0, • ,,0 , 2, 5oo 0

30 • - I ,, 0 " 0. 2000 -

S^ 0 . •' '"^'e - 100
0 8- 20 40 0 s 1000 5 15 2

time/lag theta in radians

(a) (b)

Figure 4.26: Twenty-one parameter vector IHOMS representation when SNR = -5.5dB.
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data window, and a step increment of one are the specified function options used in the

simulations. Figures 4.27, 4.28, and 4.29 show the spectrogram time-frequency

representations for the noise-free signal, an SNR of -3dB, and an SNR of -5.5dB,

respectively. Figures 4.30, 4.31, and 4.32 display the 1-1/2 Dips representations for the

noise-free case, an SNR of -3dB, and an SNR of -5.5dB, respectively. Unlike the

IHOMS representation, both 1-1/2 Dip, and the spectrogram indicate fractional start and

finish frequencies for each chirp in addition to slew rate. For a given noise level, the

detection capabilities of 1-1/2 Dips, the spectrogram, and the 21 parameter vector IHOMS

are comparable. However, IHOMS has a much higher computational cost than either of

the other methods. Generating a 21 parameter vector IHOMS surface based upon a

moment slice calculated from 100 lags requires 2,100 100-point Fourier transforms. By

comparison, the spectrogram and 1-1/2 Dips require only 256 32-point Fourier transforms

to generate an equivalent time-frequency representation.
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Figure 4.27: Spectrogram of noise-free two chirp signal.
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Figure 4.28: Spectrogram of two chirp signal with SNR = -3dB.
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Figure 4.29: Spectrogram of two chirp signal with SNR = -5.5dB.
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Figure 4.30:1-1/2 Dips representation of noise-free two chirp signal.
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Figure 4.31: 1-1/2 Dips representation of two chirp signal with SNR = -3dB.
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Figure 4.32: 1-1/2 Dips representation of two chirp signal with SNR = -5.5dB.

IHOMS representations indicate only the slew rate of chirps and not their start/stop

frequencies. As a consequence, IMOMS cannot distinguish between two or more

different chirps having the same slew rate. Figure 4.33 displays the IHOMS

representation for two chirps. The first chirp starts at a frequency of 64/256 and finishes

at 192/256. The second chirp starts at 1281256 and finishes at 256/256. They both have

the same slew rate of 128Hz/second. The IHOMS representation detects the presence of

only one chirp in the signal. The maximum of D (0) occurs at 0.19 radians which

corresponds to the proper b parameter of 64. The spectrogram and 1-1/2 Dips

representations indicate the presence of both chirps. The 1-1/2 Dip, time-frequency

surface of this signal is displayed in Figure 4.34.
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Figure 4.33: IHOMS representation of two chirps having the same slew rate.
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Figure 4.34: 1-1/2 Dips representation of two chirps having the same slew rate.
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The IHOMS algorithm also requires a more intricate sampling scheme than does the

spectrogram and 1-1/2 Dips methods. The received signal has to be sampled at a much

higher sampling rate in order to obtain the data samples needed to form the moment slices

in acjriance with (2.30) while satisfying (2.28) and (2.29).
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V. CONCLUSIONS

A. DISCUSSION OF RESULTS

The 1-1/2 Dip, method handles both signal and noise power differently than the

spectrogram. With respect to signal power, the maximum processed signal power is the

same for either method. But, because 1-1/2 Dips signal power is modulated, the average

signal power is either a third of the spectrogram's if the signal is real valued, or half the

spectrogram's if the signal is complex valued. With respect to noise power, the methods

exhibit estimate variances that depend differently on the size of the data window and the

input variance. Whereas the spectrogram's variance is a function of input variance

squared and window length squared, 1-1/2 Dips's variance depends upon input variance

cubed and window length. Consequently, 1-1/2 Dips is more resistant to input noise than

the spectrogram if the noise level is low enough and the window length is large

enough. Conversely, the spectrogram handles noise better if either the window is too

small or the input noise is too great. When the effects of signal and r ..se are combined,

the methods are compared by determining how many noise standard deviations the average

r;gnal power is above the mean noise level. This measure represents the method's

processing gain. 1-1/2 Dips has a larger processing gain than the spectrogram at high SNR

for any reasonably sized data window. As SNR decreases, the processing gain advantage

enjoyed by 1-1/2 Dips diminishes. At a sufficiently low SNR value that depends on the

size of the data window, the spectrogram becomes the better estimate. As window length

increases, 1-1/2 Dips's processing gain improves relative to the spectrogram's.

As implemented in this study, the spectrogram and 1-1/2 Dips are superior to the

bispectrum at detecting multi-component stationary signals in white Gaussian
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noise. However, the frequency bin averaging scheme used in the simulations is not as

favorable to the bispectrum due to the nature of its frequency-frequency representation.

The bispectrum does have an advantage though over the spectrogram and 1-1/2 Dip, in its

ability to distinguish between unrelated signals, harmonic signals, and quadratically phase

coupled signals. The only limitation is that quadratic phase coupling is not detectable if

the frequencies of the coupled signals are harmonics of the same fundamental frequency.

IHOMS usefulness is limited to detection of linear chirps having different slew

rates. This method is considerably more costly than the spectrogram and 1-1/2 Dips in

terms of computations, especially for noisy signals.

B. SUGGESTIONS FOR FUTURE STUDY

Future work on two aspects of 1-1/2 Dips might prove worthwhile. The first is

finding an optimum window and/or smoothing function. Rectangular windows,

Hamming windows, and boxcar smoothing have been used in ONEHALF to date. Since

1-1/2 Dips is a degenerate form of the bispectrum, a window function satisfying bispectral

window requirements might prove to be better window. The second area warranting

further study involves the inherent modulating effect of the 1-1/2 Dip, algorithm. The

modulation contains useful signal information if it could be extracted from the 1-1/2 Dips

representation.

The logical next step for future work on the bispectrura is to extend it to a time-

frequency representation. Implementing an alternate bispectral calculation method

relying on polar rasters looks like a promising starting point. Evaluation of parametric

methods and comparison to the non-parametric methods of computing the bispectrum

might prove worthwhile. In addition, better averaging schemes for the bispectr-um

frequency-frequency surface could be developed.
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APPENDIX A: VARIANCE OF THE 1-1/2 Dip, ESTIMATE

The 1-1/2 Dips spectrum is computed using (2.24). The variance of this estimate is

derived here for a zero mean i.i.d. Gaussian input, x - N (0, o2). Results are obtained for

both real and complex valued noise. A rectangular window, i.e. w(k)=l for 0•9 k : N - 1,

is assumed for these calculations.

The mean of the 1-1/2 Dips estimate is:

IN-i
E{12 p} = E{X(n)2x*(n - k)+x(n)2x(n + k) ) exp (-jok).

Since the expectation operation is distributive,

I N-1I22 1 .

E{l-l/2bs}= b { E [Ix (n) 2x* (n - k) I + E [x (n) 2 x(n+k)] exp (-jo)k) .
k-O

Letterml = E{Ix(n) 2x*(n-k)I and term2 = E{Ix(n). 2x(n+k)}. Expand-

ing terml yields

terml = E {x* (n)x(n)x* (n-k)}.

For k:*0 ,

terml = E {x* (n)x(n) IE{x* (n-k)}

= Y2

=0,

since the input samples are independent and the mean of the input sequence, g = 0.

For k = 0,

terml = E {x* (n)x(n)xe (n)}.

Assuming that the real and imaginary parts of x(n) are independent,
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Xr(n), xi (n) -~N (0,102 ,

then term 1 can be rewritten as:

term 1= E { [xr(n)I-jxa(n)] [xrf(n) +jx (n)] [xr(fn) -jx (n)] I,

which simplifies to,

terml= {E[xr,(n)I +E[xr(n)IE[x (n)]}-jlE[x3(n)l + E[xi(i)IE x2() 1

after cross-multiplying and regrouping the real and imaginary parts. The terms in the last

expression involving the product of a first moment and a second moment are zero because

the first moment is zero. The third moment quantities in the same expression are also

zero because the processes are distributed normally about a zero-mean. The final result

is that term 1 is zero for any value of k. The same is true for term2. Consequently.

iN-I
E { 1-1/2 Dips} = 1 - {terml + term2} exp (-jtok)

k-O

=0.

The second moment of the estimate is:
2_.(in) (s)*

1-1/2 bipsI } = E { 1-1/2 bins (n, co) • 1-1/2 ips) (n, o) , (A.!)

where,

N-I

1-1/2 Dips (n,co) = • ({x(n)*2x (n-rm) +.x(n) 2X(n+m) exp(-j(om),
m-O

and

(s)* 1 N-1
1-1/2Dipv (n,co) = E {J•x(n) 2 x(n-s) +!x(n) 2x* (n+s)}exp(jws).

s O

After multiplying the last two equations together, collecting terms, and distributing the

expectation operator, (A. 1) becomes:
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N-IN-I

E{'1 2 bap'= j {terml+term2+termn3+term4}exp(-jw(m-s))
m-Os-0

(A.2)

where terml = E[!x(n) 4 x* (n-m)x(n-s)],

term2 = E [ x (n) 4x* (n -m)x* (n +s)]

term3 = E [:x(n) 4x(n +m)x(n-s)I,

and term4 = E [!x(n): 4 x(n +m)x* (n + s)].

The first element in each of the terms above represents a product of four elements:

Ix (n) 4 = x * (n) x (n) x* (n) x (n)

Term l, through term4 are considered separately for all possible in and s index

values. Two different mixed-moment relationships for a zero-mean Gaussian process are

needed. For a real, zero mean Gaussian process, the following relation applies [Ref. 7]:

E {x 1x 2x 3x 4} = E {xIx 2} E {x 3x 4} +E{xlx3}E{x 2x 4} (A.3)

+ E {xlX4} E {x2x3 }.

For a complex zero mean Gaussian process, a slightly different relation holds [Ref. 11]:

E {x* 1x 2x* 3x4} = E {x* x2 } E {x* 3x4) +E {x* Ix4 E {x* 3x2} . (A.4)

Terml is evaluated first:

1. Form*Oands*O,
terml1 = E [x* (n) x(n)x"' (n) x(n) ] E [x* (n -mi) x(n -s) ].(A.5)

Applying (A.3) to a real process, termI reduces to:

term1 = 3 [E {x(n)x(n) 1 2 E{x(n-m)x(n-s) I (sincei.i.d.)

3 (o2) RX (s - m) (since zero-mean)
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= 34. a 26 (s- M) (since ii.d.)

= 3a66(s-m). (A.6)

For a complex process, (A.4) is employed on (A.5) to achieve a similar result:

termIC =2 [E {x(n)x* (n) } E]tEx* (n-m)x(n-s)}
S222(;x R.(m -s)

2a4. U26 (M -S)
= 2cY6(m- s). (A.7)

2. Ifm = 0andso0,

termlC = E {x* (n)x (n)x* (n)x (n)x* (n) } E {x(n- s)} (A.8)
= 0 (zero-mean process = E {x (n - s)} = 0)

= term1R.

This result is the same for both a real process and a complex process.

3. Ifm* Oands = 0,

termlC = E {x* (n)x (n)x* (n)x (n)x (n) I E {x* (n- m) J (A.9)
= 0 (zero-mean process = E {x* (n - m) } = 0)

= termlR.

4. If m = s = 0,

termnlC = E{x* (n)x(n)x* (n)x(n)x* (n)x(n) } . (A.10)

Assuming that the real and imaginary parts of the process are independent

implies that,

Xr (n), xi (n) -N (0, 2) (A.11)

Dropping the index notation in (A.10), breaking up eacb term into its real and

imaginary parts, and grouping like terms produces:

termIc = E { (xr -jxi) 3 (Xr +xi) 3},

which, after multiplication and collection of terms, becomes:
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termC= Ejx 6 + 3E x}E X4 + 3EIX4}Ejx2  +E,{X 61 (A.12)

The second order moments in (A.12) are simply the variance of the real and
imaginary parts of the process. The fourth order moments are computed using
(A.3). The sixth order moments are obtained by computing the sixth deriva-
tive of the moment generating function for a zero-mean Normal process [Ref.

17]:

Ejp 6 1 ... (6) (t)I = ioP 1.0 cit P 2I- tw
= 15o 6

where the subscript p denotes either xr or xi since their variances are equal. For

a complex process, in terms of this variance, (A. 12) becomes:

term IC = 15 6 + 3 (cy) (3 4) + 3(3a4) ( 1) + 1506 (A.13)

= 48 6

From (A._11), 2 2 Using this relation, (A. 13) becomes:

term 1 = 48 , (A.14)

- 60c6

If the process is real, the xi terms in (A. 12) are zero and xr terms become x:

termIR = E {x6 1.

Evaluating the sixth moment using the moment generating function yields:

termIR = 156. (A.15)

Term2 was similarly analyzed. For the m *0 and s *0 index combination, the

second moment term in the equivalent (A.6) and (A.7) is:

E{x* (n-m)x(n+s)} =0o2&(-m-s)

- 0,
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because the delta function is always zero for non-negative indices. Like term 1, term2 is

zero whenever just one index is zero because the process is zero mean. If the process is

real and both indices are zero then term2 becomes a sixth order moment:

termR = E Ix(n)x(n)x(n)x(n)x(n)x(n) }
= 1 5 •6 .

If the process is complex, four terms in the expectation are conjugated while two are not.

The result is a final expected value of zero since the process is zero mean Gaussian with

independent real and imaginary parts:

termlc = E tx* (n)x(n)x* (n)x(n)x* (n)x* (n)}

= E{ (xr -jXi) 4 (xr +jxi) 21

= 0.

Consequently, term2 is zero for all index combinations if the process is complex and is

non-zero only for the m = s = 0 condition if the process is real.

Evaluation of term3 produces the same result obtained as for term2, and evaluation of

term4 produces the same results obtained as for terml. Table A.1, and Table A.2

summarize term evaluation results for the real and complex processes, respectively.

TABLE A.I: SUMMARY OF TERMS FOR REAL PROCESSES

indexcndti term 1 term2 term3 term4condition

m*0and 3a6b (s - m) 0 0 3c6b (s - m)
s*O

m =0and 0 0 0 0
s*0

m*0 and 0 0 0 0
s=O

m =s= 0 l5a 151a 1506 15a6
_____s _ _ _ 0_ X x

89



TABLE A.2: SUMMARY OF TERMS FOR COMPLEX PROCESSES

indexindex term 1 term2 term3 term4condition

m*Oand 20.b (s - m) 0 0 2ay5(S-M
s*0

m =0and 0 0 0 0
s*0

m*0 and 0 0 0 0
s=O

m=s=0 6o6 0 0 6ax6

To obtain the second moment of the 1-1/2 Dips estimate for a real process, the terms

shown in Table A. 1 are substituted into (A.2). The m = s = 0 indices are taken out of

the summation to obtain:

N-IN-i

REAL= {4(156) + E 2(3a6)(s -m)exp(-jo(m -s))}
rn-is-i

N-1
{60o 6+ 2 (3°6) exp (-jwm) } (sifting theorem)

= {160r6 +(N-1)6a6}

54+6N 2 3
- 4 (4 ); (A.16)

where o = 0 was assumed going from the second line to the third line in order to account

for the maximum variance contribution from the sum term.

Following the same steps for a complex signal, (A.2) becomes:

E -t i' 212 3. A 7
E 1-1t2 biPSI}COMPLEX = [N +2 (A.17)
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The variance of the 1-1/2 Dips estimate is given by:

var { 1-1/2 bipsI} = E I11-1/2 bips 2} - [E { 1-1/2 bips 2.

Note that the variance is simply equal to the second moment since the mean of the

estimate is zero. Therefore, the variance of the 1-1/2 Dips estimate is given by (A. 16) for a

real zero-mean independent Gaussian process. If the process is complex zero-mean

independent Gaussian with independent real and imaginary pans, the estimate's variance

is given by (A.17).
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APPENDIX B: THEORETICAL 1-1/2 Dips SIGNAL POWER

This Appendix first shows how the theoretical 1- 1/2 Dips spectrum is calculated for an

input signal consisting of a single real valued sinusoid. The computation is then repeated

for a complex valued sinusoid. Both calculations are made using a rectangular window in

(2.24).

A. REAL VALUED SINUSOID CALCULATION

The real valued sinusoidal input signal is

x(n) = cos (On), (B.1)

where,

= 2t, (B.2)

is the digital frequency of the signal. Substituting (B.1) into (2.24) using a rectangular

window yields:

N-1
1-1/2 Dips(n, a)) = • cos2 (On) {cos [6(n-k)] +cos [0(n+k)] } exp(-jcok).

(B.3)

After applying the trigonometric cosine product identity,

cos (A -B) + cos (A +B) = 2cosAcosB, (B.4)

and pulling the cosine cubed term out of the summation since it is not dependent on k,

(B.3) becomes:

N-1
1-1/2 Dips (n, wo) = cos 3 (On) E cos (Ok) exp (-jiok). (B.5)

k=O

The summation portion of (B.5) is the Fourier transform of the sinusoidal signal.

Evaluating the transform at co = 0 and expressing 0 as shown in (B.2), the Fourier
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transform can be expressed in terms of delta functions:

N-1

Ecos(2nTk)exp(-j2n'lk) - (w-m) +=[a-(N-m)l} (B.6)
k-O

With (B.2) and (B.6), (B.5) now becomes:

1-1/2 Dips-(n, w) = Ncos (2nnn) {1(o-m) +6[o- (N-m)] . (B.7)

B. COMPLEX VALUED SINUSOID CALCULATION

For a complex valued sinusoid input,

x(n)= exp (j2irtn) (B.8)

= exp (jOn),

the 1-1/2 Dips estimate calculated by (2.24) using a rectangular window is:

1-1/2 D (n, o) =p , E exp(jOn)I2Iexp [-jO(n-k)] +exp jO(n+k)] }exp(-jo~k)
k-0

(B.9)

After factoring out the exponential terms that are not a function of k, and recognizing that

the magnitude squared term is simply equal to one, (B.9) reduces to:

1 N-I
1-1/2 Dips (n, ct) {exp jUn] +exp [-jOn] I Eexp(jOk) exp (-j1k). (B.10)

kW0

With the Euler identity,

1 {exp .iOn] +exp [-j~n] = cos (On), (B.11)

and (B.2), (B.10) becomes:

N-1

1-1/2 Dips(n, (o) = cos (2nr-n) • exp (j2.-mk) exp (-jok). (B.12)
k=O
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The summation term in (B.12) is the Fourier transform of a complex sinusoid which is

expressible in terms of a delta function yielding:

1-1/2 D (n, (o) = Ncos (2 n) M (co,-m). (B.13)

94



APPENDIX C: COMPUTER PROGRAMS

The four extrinsic Matlab functions contained in this Appendix are written for Matlab

version 4.0. If the functions are used with earlier versions of Matlab, contour plots and

mesh plots will not be oriented correctly.
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%function [P,freqindextimeindex] = one-half(data,wintype,winlen,step);

%This function will calculate the 1 1/2 Dips spectral surface. The 1 1/2 Dips

%surface characteristics are determined by the selection of window

%type (wintype), window length (winlen) and the distance that the window

%is moved through the data sequence (step). The magnitude of the positive

%half of the 1 1/2 D spectral plane is returned in the "P" matrix.

%Outputs "timeindex" and "freqindex" aid in axis labeling.

%The inputs are:

%6data - The input observations vector. The length should be a power of 2.

%wintype: '0' Rectangular Window

% 'I' Hamming Window

%winlen - The desired width of the window, normally half of the input

% length.

%step - Time step desired, can be '1' or a multiple of '2'

%prepared by Karen A. Hagerman, 06 May 1992.

%modified by Jeff McAloon, 01 June 1993.

function [Pfreqindex,timeindex,svect]=one-half(data,wintype,winlen,step)

[datarows,datacolumns]=size(data);

if datarows"-= 1

data-data.';

end

siglen=length(data);

96



if winrype==O

win=ones(winlen- 1,1);

elseif wintype==1

win=hammning(wixilen- 1);

end

W=[win(winlen/2:- 1: 1)];

X=[zeros(l,winlen) data zeros(lwinlen)].'

p=zeros(siglen/step,winien);

index=1;

for n--winlen+ 1: step: siglen+winlen-step+ 1

xt--x;

11=max((winien+ 1 ),(n-(winl -n/2- 1)));

ul--min((n+s(winlen/2- 1)),(siglen+winlen));

ctp=xt(ll:ul);

mtp--mean(ctp);

xt(ll:uI)=ctp-mtp;

xdt--xt((n-(winien/2- 1)): (n+(winlenl2- 1)));

Xn=Cabs(xt(n))A2;abs(xt(n))A21;

Xxn=[conj(xt(n:-1: n-(winlen/2- 1))) xt(n:n+(winlenj2- 1))]:

product=((XnI*Xn).*W).';

product=[product 0 conj(product(winlen/2:- 1:2))];

pt=0.5*fftshift(fft(product));

index--index-i-;

end

P=abs(p(:,winlenl2+1 :winlen));
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[prow,pc-olumn]=size(P);

freqindex=[O:pcolumn- 1];

timeindex=[ 1 prow];
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% function [P,freqaxis,timeaxis] = spectro(data,wintypewinlen);

"% This function calculates spectrogram of the supplied sequence,

"% "data". The user must specify:

"% "wintype" - "0" for a rectangular window.

% "1" for a Hamming window.

"% "winlen" - The desired length of the data window.

"% The time step is fixed at one and the spectrogram is calculated with

"% non-normalized periodograms. The time-frequency surface is returned

% in the "P" matrix. The columns of "P" are the frequency bins while the

"% rows are the time steps. Time-frequency axis labeling vectors,

"% "freqaxis" and "timeaxis" are also returned to aid in the plotting

"% of results.

"% prepared by Jeff McAloon, 01 June 1993.

function [pow,freqaxis,timeaxis] = spectro(data,wintype,winlen)

x=data;

xlen=length(x);

N=winlen;

[row, col]=size(x);

if row > 1

end

x=[zeros(1,N/2) x zeros(l,N/2)];
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if wintype ==1

win=haxnming(N)';

elseif wintype ==0

win=ones(l1,N);

end

for ind= 1: xlen

xseg--x(ind:(N- 1+ind));

xseg--xseg-mean(xseg);

SP=(abs(fft(xseg. *wjjnN))).A2;

POW(ind,:)-fftshift(SP);

end

pcw=POW(:,N/2+1:N);

timeaxis=0:xlen- 1;

freqaxis=0:N12- 1;
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% function [bis, baxis] = indbis(data,datseglag,tlen,win)

% This function computes the bispectrum of real and complex valued data

% sequences by the indirect method. The tri-correlation sequence is

% computed for a specified number of segments. These segment sequences

% are then averaged to obtain the final tn-correlation sequence. The

% three available tri-correlation window options are the unit hexagonal

% window, Parzen's window, and the optimum window (also known as Sazaki's

% minimum bias window). The required function call arguments are:

% "data" -> input data sequence vector.

"% "datseg" -> number of samples to be used in each segment.

"% "lag" -> number of lags to be used in the computation of the

% tri-correlation sequence.

% "dlen" -> square dimension of the two dimensional FFT to be used

% on the final form of the tri-correlation sequence.

% "win" -> "0" for unit hexagonal window

% "1" for optimum window

% "2" for Parzen's window.

% The function returns the complex bispectrum in the "tlen-by-tlen" sized

% matrix "bis". A vector "baxis" is returned that can be used to label

% both bispectrum frequency axes.

% prepared by Jeff McAloon, 01 Jun 1993.

function [bis, baxis] = indbis(data,datseg,lag,tlen,win)

% Initialize parameters and reorient data if necessary:
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N=length(data);

Ns--fix(N/datseg);

(rd, cd]=size(data);

if cd> 1

x~data.';

else

x=data;

end

X=[O;x-mean(x)];

Rt--zeros(2*lag+ 1);

rx=zeros(2*lag+ 1);

% Compute tni-correlation sequence:

for i=1l:Ns

for j=1 :datseg

yQj)=-xo+(i-l1)*datseg);

end

y~y-mean(y);

for m=1:(2*lag+1)

for n=1:(2*lag+l)

s 1=-max([ 1 ,-(m- (lag+ 1)),-(n- (lag+ 1 ))]);

s2--min([lag,lag-(m-(lag+1 )) ,lag-(n-(lag+ I))));

r=O;

for k=sl:s2

r--r+conj(y(k+ 1))*y(k+ l+(m-(lag+l1)))*y(k+l+(n.(lag+ 1)));

end

rx(n,m)--r;

end

102



end

Rt--Rt+rx;

rx =0;

end

R-flipud(RtINs);

R=Rt/Ns;

% Determine tri-correlation window function:

if win =O % unit hexagonal window

W=ones(size(R));

elseif win 1= % optimum window

itm=O;

for m=-1ag:1Iag

itmn-itmn+1;

wm=abs(sin(pi*nVI/ag))/pi + (1 -abs(m/lag))*cos(pi*m/lag);

itn=O;

for n=-lag~lag

itn~itn+1;

wn=abs(sin(pi*n/lag))/pi + (1 -abs(n/lag))*cos(pi*n/1ag);

wmnn=abs(sin(pi*(m-n)/lag))/pi + (1 -abs((m-n)IIag))*cos(pi*(m-n)/lag);

W(;tn,itn)--wm*wn*wmn;

end

end

elseif win == 2 % Parzen's window

itm=O;

for m=-lag~lag

itm=itm+ 1;

if abs(m) <= lagl2
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wm=1 -6*(abs(m)/Iag)A2+6*(abs(m)/1ag)A3;

else

wm=2*( 1-abs(M)/1ag)A3;

end

itn=O;

for n=-lag: lag

itn=itn+ 1;

if abs(n) <= lag/2

wn=1-6*(abs(n)/1ag)A2+6*(abs(n)/lag)A3;

wmn= 1 6*(abs(m-n)/lag)A2+6*(abs(m-n)/lag)A3;

else

wn=2*(l1 abs(n)/lag)A3;

wmn=2*(1.abs(m-n)/1ag)A3;

end

W(itm~itn)--wm*wn*wmn;

end

end

end

% Compute bispectrumn.

bis--ftshift(fft2(R.*W,tlen,tlen));

baxis=(-tlen/2): (tlen/2- 1);

104



% function Amtrx = gen_a(al__elem);

% This function computes the parameter vectors needed to compute a fourth

% order moment slice in the IHOMS time-frequency method implemented by

% the extrinsic matlab function ATHIMS.M. The first element, al, of

% each IHOMS parameter vector is specified in the function call as the

% vector, "alelem". The length of "al_elem" is the number of distinct

% parameter vector sets (i.e.one set would be [I al a2 a3]) returned as

% columns in the matrix "Amtrx". This also equals the number of time-

% frequency surfaces summed by IHOMS to form the final time-frequency

% representation.

% prepared by Jeff McAloon 01 June 1993.

function Amtrx = gen.a(al-elem)

% Verify input vector a column vector:

[rin, cin]=size(al1..elem);

ifcin> 1

alv=al_elem.';

end

% Iteratively solve for parameter vectors:

A=[];

for p=1:length(alv)

a3v=-5:1:5;

a2a=100; a2b=1; i=1; md=99;
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while (abs(a2b-a2a) >= 0. 1) & (i <= length(a3v))

&2a= 1-a lv(p)-a3v(i);

a2b--real(sqrt(1 -alv(p)A2-a3v(i)A2));

if abs(a2a-a2b) <= md

indmin=i;

end

md--min(md,abs(a2a-a2b));

id--max(2,indmin);

i-i+ 1;

end

a3v=a3v(id-1):0.OOO1 :a3v(id);

a2a=1; a2b=2; i=O;

while (abs(a2b-a2a) >= 0.000 1) & (i <= (length(a3v)- 1))

a2a= 1-a lv(p)-a3v(i);

a2b=sqrt(I-alv(p)A2-a3v(i)A2);

end

al=alv(p); a2=a2a; a3=a3v(i);

a=[1I al1 a2 a3];

A=[A, a.';

end

Amtrx=A;
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"% function surf = ath_ims(M,u,b,N,SNR,Ag)

"% This function computes the IHOMS time-frequency representation of

"% multi-component chirp signals in white Gaussian noise. Input arguments

% are:

"% M -> number of chirp components.

" u -> vector of chirp starting frequencies.

% b -> vector of halved chirp slew rates.

% N -> data record length.

% SNR -> desired SNR. If noise free signal desired enter "99".

% A -> matrix whose columns are the "a" parameter vectors needed to

% form the moment slice. See extrinsic Matlab function GENA

% generate this matrix.

% g -> kernel function parameter.

% The moment slice is computed using 100 lags. The IHOMS surface is

% plotted along with a 1-D radial maxima plot that aids in locating and

% characterizing the chirps present in the signal. In addition, the

"% function returns a 100 X 100 matrix, "surf". The columns are time/lag

"% and the rows are frequency bins.

"% prepared by Jeff McAloon, 01 June 1993.

function surf = athjims(M,u,b,N,SNR,A,g)

% Initialize parameters:

randn('seed',O)

if SNR == 99 % noise free
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GG=O;

else

GG=1;

end

Z--sqrt(lOA(GG*SNR/lO));

maxlag= 100;

j=sqrt(- 1);

[rA,cA]=size(A);

SURF=zeros( 100);

% MHOMS algorithm:

for k=l:cA

a=A(: ,k);

kn=k

TF=fl;

for n=0:maxlag-lI

for lag=0:maxlag-1I

noJ-,G*randn(lI,length(a));

term(l)=0;

for p=I: M

term(1 )=term(lI)+Z*expOj*2*pi*(((lag)IN)*u(p)+(((lag)/N)A12)*b(p)));

end

term(1)--term(1)+no(1);

for i=2:lengffi(a)

arg--n+a(i)*lag;

if arg < 0

term(i)=0;

else
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terrn(i)=0;

for q=l:M

term(i)-=term(i)+Z*expo*2*pi*(((arg)fN)*u(q)+(((arg)fN)A2)*b(q)));

end

term(i)-terrn(i)+no(i);

end

end

kern--exp(-g*la~gA2);

m(lag+l )=kern*conj(term( l))*term(2)*term(3)*term(4);

end

TF(n+l,:)=fft(m);

end

SURF=SURF+TF;

end

% Orient matrix for MATLAB 4.0 contour plot:

surf=rot9O(flipud(abs (SURF)),- 1);

% Plot MHOMS surface:

t=-O:maxlag- 1;

f=-O:maxlag-l;

subplot( 12 l),contour(t,f~surf,2),title('IHOMS surface'),

xlabel('timellag'),ylabel('frequency')

% MHOMS ILD search routine and plot:

theta=O:0.01 :pi/2;

for in=1:Iength(theta)

D(in)0-;
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for r--30:90

t=1I+r*cos(theta(in));

f=1l+r*sin(theta(in));

D(in)=D(in)+surf(f~t);

end

end

subplot(I 22),Plot(theta.D),xlabel(' theta in radians'),

ylabel('D(theta)'),title(' 1-D radial maxima plot')
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